Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Annu Rev Anim Biosci ; 10: 441-468, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-2283595

ABSTRACT

Nonhuman primates are critically important animal models in which to study complex human diseases, understand biological functions, and address the safety of new diagnostics and therapies proposed for human use. They have genetic, physiologic, immunologic, and developmental similarities when compared to humans and therefore provide important preclinical models of human health and disease. This review highlights select research areas that demonstrate the importance of nonhuman primates in translational research. These include pregnancy and developmental disorders, infectious diseases, gene therapy, somatic cell genome editing, and applications of in vivo imaging. The power of the immune system and our increasing understanding of the role it plays in acute and chronic illnesses are being leveraged to produce new treatments for a range of medical conditions. Given the importance of the human immune system in health and disease, detailed study of the immune system of nonhuman primates is essential to advance preclinical translational research. The need for nonhuman primates continues to remain a high priority, which has been acutely evident during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic. Nonhuman primates will continue to address key questions and provide predictive models to identify the safety and efficiency of new diagnostics and therapies for human use across the lifespan.


Subject(s)
COVID-19 , Primates , Animals , COVID-19/veterinary , Disease Models, Animal , Humans , Primates/genetics , SARS-CoV-2 , Translational Research, Biomedical
2.
Mol Genet Genomics ; 297(6): 1711-1740, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2035056

ABSTRACT

Timelines of population-level effects of viruses on humans varied from the evolutionary scale of million years to contemporary spread of viral infections. Correspondingly, these events are exemplified by: (i) emergence of human endogenous retroviruses (HERVs) from ancient germline infections leading to stable integration of viral genomes into human chromosomes; and (ii) wide-spread viral infections reaching a global pandemic state such as the COVID-19 pandemic. Despite significant efforts, understanding of HERV's roles in governance of genomic regulatory networks, their impacts on primate evolution and development of human-specific physiological and pathological phenotypic traits remains limited. Remarkably, present analyses revealed that expression of a dominant majority of genes (1696 of 1944 genes; 87%) constituting high-confidence down-steam regulatory targets of defined HERV loci was significantly altered in cells infected with the SARS-CoV-2 coronavirus, a pathogen causing the global COVID-19 pandemic. This study focused on defined sub-sets of DNA sequences derived from HERVs that are expressed at specific stages of human preimplantation embryogenesis and exert regulatory actions essential for self-renewal and pluripotency. Evolutionary histories of LTR7/HERVH and LTR5_Hs/HERVK were charted based on evidence of the earliest presence and expansion of highly conserved (HC) LTR sequences. Sequence conservation analyses of most recent releases 17 primate species' genomes revealed that LTR7/HERVH have entered germlines of primates in Africa after the separation of the New World Monkey lineage, while LTR5_Hs/HERVK successfully colonized primates' germlines after the segregation of Gibbons' species. Subsequently, both LTR7 and LTR5_Hs undergo a marked ~ fourfold-fivefold expansion in genomes of Great Apes. Timelines of quantitative expansion of both LTR7 and LTR5_Hs loci during evolution of Great Apes appear to replicate the consensus evolutionary sequence of increasing cognitive and behavioral complexities of non-human primates, which seems particularly striking for LTR7 loci and 11 distinct LTR7 subfamilies. Consistent with previous reports, identified in this study, 351 human-specific (HS) insertions of LTR7 (175 loci) and LTR5_Hs (176 loci) regulatory sequences have been linked to genes implicated in establishment and maintenance of naïve and primed pluripotent states and preimplantation embryogenesis phenotypes. Unexpectedly, HS-LTRs manifest regulatory connectivity to genes encoding markers of 12 distinct cells' populations of fetal gonads, as well as genes implicated in physiology and pathology of human spermatogenesis, including Y-linked spermatogenic failure, oligo- and azoospermia. Granular interrogations of genes linked with 11 distinct LTR7 subfamilies revealed that mammalian offspring survival (MOS) genes seem to remain one of consistent regulatory targets throughout ~ 30 MYA of the divergent evolution of LTR7 loci. Differential GSEA of MOS versus non-MOS genes identified clearly discernable dominant enrichment patterns of phenotypic traits affected by MOS genes linked with LTR7 (562 MOS genes) and LTR5_Hs (126 MOS genes) regulatory loci across the large panel of genomics and proteomics databases reflecting a broad spectrum of human physiological and pathological traits. GSEA of LTR7-linked MOS genes identified more than 2200 significantly enriched records of human common and rare diseases and gene signatures of 466 significantly enriched records of Human Phenotype Ontology traits, including Autosomal Dominant (92 genes) and Autosomal Recessive (93 genes) Inheritance. LTR7 regulatory elements appear linked with genes implicated in functional and morphological features of central nervous system, including synaptic transmission and protein-protein interactions at synapses, as well as gene signatures differentially regulated in cells of distinct neurodevelopmental stages and morphologically diverse cell types residing and functioning in human brain. These include Neural Stem/Precursor cells, Radial Glia cells, Bergman Glia cells, Pyramidal cells, Tanycytes, Immature neurons, Interneurons, Trigeminal neurons, GABAergic neurons, and Glutamatergic neurons. GSEA of LTR7-linked genes identified significantly enriched gene sets encoding markers of more than 80 specialized types of neurons and markers of 521 human brain regions, most prominently, subiculum and dentate gyrus. Identification and characterization of 1944 genes comprising high-confidence down-steam regulatory targets of LTR7 and/or LTR5_Hs loci validated and extended these observations by documenting marked enrichments for genes implicated in neoplasm metastasis, intellectual disability, autism, multiple cancer types, Alzheimer's, schizophrenia, and other brain disorders. Overall, genes representing down-stream regulatory targets of ancient retroviral LTRs exert the apparently cooperative and exceedingly broad phenotypic impacts on human physiology and pathology. This is exemplified by altered expression of 93% high-confidence LTR targets in cells infected by contemporary viruses, revealing a convergence of virus-inflicted aberrations on genomic regulatory circuitry governed by ancient retroviral LTR elements and interference with human cells' differentiation programs.


Subject(s)
COVID-19 , Endogenous Retroviruses , Hominidae , Animals , Male , Humans , Endogenous Retroviruses/genetics , Pandemics , Steam , Evolution, Molecular , SARS-CoV-2 , Hominidae/genetics , Terminal Repeat Sequences/genetics , Genomics , Primates/genetics , Phenotype , Mammals/genetics
3.
Proc Natl Acad Sci U S A ; 119(35): e2206610119, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1984600

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a coronavirus that spilled over from the bat reservoir. Despite numerous clinical trials and vaccines, the burden remains immense, and the host determinants of SARS-CoV-2 susceptibility and COVID-19 severity remain largely unknown. Signatures of positive selection detected by comparative functional genetic analyses in primate and bat genomes can uncover important and specific adaptations that occurred at virus-host interfaces. We performed high-throughput evolutionary analyses of 334 SARS-CoV-2-interacting proteins to identify SARS-CoV adaptive loci and uncover functional differences between modern humans, primates, and bats. Using DGINN (Detection of Genetic INNovation), we identified 38 bat and 81 primate proteins with marks of positive selection. Seventeen genes, including the ACE2 receptor, present adaptive marks in both mammalian orders, suggesting common virus-host interfaces and past epidemics of coronaviruses shaping their genomes. Yet, 84 genes presented distinct adaptations in bats and primates. Notably, residues involved in ubiquitination and phosphorylation of the inflammatory RIPK1 have rapidly evolved in bats but not primates, suggesting different inflammation regulation versus humans. Furthermore, we discovered residues with typical virus-host arms race marks in primates, such as in the entry factor TMPRSS2 or the autophagy adaptor FYCO1, pointing to host-specific in vivo interfaces that may be drug targets. Finally, we found that FYCO1 sites under adaptation in primates are those associated with severe COVID-19, supporting their importance in pathogenesis and replication. Overall, we identified adaptations involved in SARS-CoV-2 infection in bats and primates, enlightening modern genetic determinants of virus susceptibility and severity.


Subject(s)
COVID-19 , Chiroptera , Evolution, Molecular , Host Adaptation , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/genetics , Chiroptera/virology , Genetic Predisposition to Disease , Host Adaptation/genetics , Humans , Pandemics , Primates/genetics , Primates/virology , SARS-CoV-2/genetics , Selection, Genetic , Spike Glycoprotein, Coronavirus/genetics
4.
Commun Biol ; 5(1): 764, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1967632

ABSTRACT

Mammalian organs are individually controlled by autonomous circadian clocks. At the molecular level, this process is defined by the cyclical co-expression of both core transcription factors and their downstream targets across time. While interactions between these molecular clocks are necessary for proper homeostasis, these features remain undefined. Here, we utilize integrative analysis of a baboon diurnal transcriptome atlas to characterize the properties of gene networks under circadian control. We found that 53.4% (8120) of baboon genes are oscillating body-wide. Additionally, two basic network modes were observed at the systems level: daytime and nighttime mode. Daytime networks were enriched for genes involved in metabolism, while nighttime networks were enriched for genes associated with growth and cellular signaling. A substantial number of diseases only form significant disease modules at either daytime or nighttime. In addition, a majority of SARS-CoV-2-related genes and modules are rhythmically expressed, which have significant network proximities with circadian regulators. Our data suggest that synchronization amongst circadian gene networks is necessary for proper homeostatic functions and circadian regulators have close interactions with SARS-CoV-2 infection.


Subject(s)
COVID-19 , Gene Regulatory Networks , Animals , COVID-19/genetics , Circadian Rhythm/genetics , Mammals/genetics , Primates/genetics , SARS-CoV-2
6.
Front Immunol ; 13: 855230, 2022.
Article in English | MEDLINE | ID: covidwho-1862604

ABSTRACT

Most children are less severely affected by coronavirus-induced disease 2019 (COVID-19) than adults, and thus more difficult to study progressively. Here, we provide a neonatal nonhuman primate (NHP) deep analysis of early immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in blood and mucosal tissues. In addition, we provide a comparison with SARS-CoV-2-infected adult NHP. Infection of the neonate resulted in a mild disease compared with adult NHPs that develop, in most cases, moderate lung lesions. In concomitance with the viral RNA load increase, we observed the development of an early innate response in the blood, as demonstrated by RNA sequencing, flow cytometry, and cytokine longitudinal data analyses. This response included the presence of an antiviral type-I IFN gene signature, a persistent and lasting NKT cell population, a balanced peripheral and mucosal IFN-γ/IL-10 cytokine response, and an increase in B cells that was accompanied with anti-SARS-CoV-2 antibody response. Viral kinetics and immune responses coincided with changes in the microbiota profile composition in the pharyngeal and rectal mucosae. In the mother, viral RNA loads were close to the quantification limit, despite the very close contact with SARS-CoV-2-exposed neonate. This pilot study demonstrates that neonatal NHPs are a relevant model for pediatric SARS-CoV-2 infection, permitting insights into the early steps of anti-SARS-CoV-2 immune responses in infants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Child , Cytokines , Humans , Infant, Newborn , Pilot Projects , Primates/genetics , RNA, Viral
7.
Biomaterials ; 286: 121570, 2022 07.
Article in English | MEDLINE | ID: covidwho-1821147

ABSTRACT

The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.


Subject(s)
COVID-19 , Nanoparticles , Animals , COVID-19/prevention & control , Imidazoles , Immunization , Lipids , Liposomes , Mice , Primates/genetics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
9.
Commun Biol ; 3(1): 641, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-894423

ABSTRACT

The emergence of SARS-CoV-2 has caused over a million human deaths and massive global disruption. The viral infection may also represent a threat to our closest living relatives, nonhuman primates. The contact surface of the host cell receptor, ACE2, displays amino acid residues that are critical for virus recognition, and variations at these critical residues modulate infection susceptibility. Infection studies have shown that some primate species develop COVID-19-like symptoms; however, the susceptibility of most primates is unknown. Here, we show that all apes and African and Asian monkeys (catarrhines), exhibit the same set of twelve key amino acid residues as human ACE2. Monkeys in the Americas, and some tarsiers, lemurs and lorisoids, differ at critical contact residues, and protein modeling predicts that these differences should greatly reduce SARS-CoV-2 binding affinity. Other lemurs are predicted to be closer to catarrhines in their susceptibility. Our study suggests that apes and African and Asian monkeys, and some lemurs, are likely to be highly susceptible to SARS-CoV-2. Urgent actions have been undertaken to limit the exposure of great apes to humans, and similar efforts may be necessary for many other primate species.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/veterinary , Host Specificity/genetics , Pandemics/veterinary , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/veterinary , Primate Diseases/enzymology , Primates/genetics , Receptors, Virus/genetics , Amino Acid Sequence , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , Biological Evolution , COVID-19 , Chiroptera/genetics , Conserved Sequence , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genetic Predisposition to Disease , Mammals/genetics , Models, Molecular , Mutation, Missense , Peptidyl-Dipeptidase A/chemistry , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Point Mutation , Primate Diseases/virology , Protein Binding , Protein Conformation , Risk , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL